# Marginalized Gaussian Mixture Model¶

Author: Austin Rochford

In :

%matplotlib inline

In :

from matplotlib import pyplot as plt
import numpy as np
import pymc3 as pm
import seaborn as sns

In :

SEED = 383561

np.random.seed(SEED) # from random.org, for reproducibility


Gaussian mixtures are a flexible class of models for data that exhibits subpopulation heterogeneity. A toy example of such a data set is shown below.

In :

N = 1000

W = np.array([0.35, 0.4, 0.25])

MU = np.array([0., 2., 5.])
SIGMA = np.array([0.5, 0.5, 1.])

In :

component = np.random.choice(MU.size, size=N, p=W)
x = np.random.normal(MU[component], SIGMA[component], size=N)

In :

fig, ax = plt.subplots(figsize=(8, 6))

ax.hist(x, bins=30, normed=True, lw=0);

/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans
(prop.get_family(), self.defaultFamily[fontext])) A natural parameterization of the Gaussian mixture model is as the latent variable model

\begin{split}\begin{align*} \mu_1, \ldots, \mu_K & \sim N(0, \sigma^2) \\ \tau_1, \ldots, \tau_K & \sim \textrm{Gamma}(a, b) \\ \boldsymbol{w} & \sim \textrm{Dir}(\boldsymbol{\alpha}) \\ z\ |\ \boldsymbol{w} & \sim \textrm{Cat}(\boldsymbol{w}) \\ x\ |\ z & \sim N(\mu_z, \tau^{-1}_z). \end{align*}\end{split}

An implementation of this parameterization in PyMC3 is available here. A drawback of this parameterization is that is posterior relies on sampling the discrete latent variable $$z$$. This reliance can cause slow mixing and ineffective exploration of the tails of the distribution.

An alternative, equivalent parameterization that addresses these problems is to marginalize over $$z$$. The marginalized model is

\begin{split}\begin{align*} \mu_1, \ldots, \mu_K & \sim N(0, \sigma^2) \\ \tau_1, \ldots, \tau_K & \sim \textrm{Gamma}(a, b) \\ \boldsymbol{w} & \sim \textrm{Dir}(\boldsymbol{\alpha}) \\ f(x\ |\ \boldsymbol{w}) & = \sum_{i = 1}^K w_i\ N(x\ |\ \mu_i, \tau^{-1}_z), \end{align*}\end{split}

where

$N(x\ |\ \mu, \sigma^2) = \frac{1}{\sqrt{2 \pi} \sigma} \exp\left(-\frac{1}{2 \sigma^2} (x - \mu)^2\right)$

is the probability density function of the normal distribution.

Marginalizing $$z$$ out of the model generally leads to faster mixing and better exploration of the tails of the posterior distribution. Marginalization over discrete parameters is a common trick in the Stan community, since Stan does not support sampling from discrete distributions. For further details on marginalization and several worked examples, see the *Stan User’s Guide and Reference Manual*.

PyMC3 supports marginalized Gaussian mixture models through its NormalMixture class. (It also supports marginalized general mixture models through its Mixture class.) Below we specify and fit a marginalized Gaussian mixture model to this data in PyMC3.

In :

with pm.Model() as model:
w = pm.Dirichlet('w', np.ones_like(W))

mu = pm.Normal('mu', 0., 10., shape=W.size)
tau = pm.Gamma('tau', 1., 1., shape=W.size)

x_obs = pm.NormalMixture('x_obs', w, mu, tau=tau, observed=x)

In :

with model:
trace = pm.sample(5000, n_init=10000, tune=1000, random_seed=SEED)[1000:]

Auto-assigning NUTS sampler...
Average ELBO = -6,663.8: 100%|██████████| 10000/10000 [00:06<00:00, 1582.50it/s]
Finished [100%]: Average ELBO = -6,582.7
100%|██████████| 5000/5000 [-1:54:12<00:00, -0.07s/it]


We see in the following plot that the posterior distribution on the weights and the component means has captured the true value quite well.

In :

pm.traceplot(trace, varnames=['w', 'mu']);

/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans
(prop.get_family(), self.defaultFamily[fontext])) In :

pm.plot_posterior(trace, varnames=['w', 'mu']);

/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans
(prop.get_family(), self.defaultFamily[fontext])) We can also sample from the model’s posterior predictive distribution, as follows.

In :

with model:
ppc_trace = pm.sample_ppc(trace, 5000, random_seed=SEED)

100%|██████████| 5000/5000 [03:28<00:00, 23.93it/s]


We see that the posterior predictive samples have a distribution quite close to that of the observed data.

In :

fig, ax = plt.subplots(figsize=(8, 6))

ax.hist(x, bins=30, normed=True,
histtype='step', lw=2,
label='Observed data');
ax.hist(ppc_trace['x_obs'], bins=30, normed=True,
histtype='step', lw=2,
label='Posterior predictive distribution');

ax.legend(loc=1);

/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans
(prop.get_family(), self.defaultFamily[fontext])) 