In [1]:

import matplotlib.pyplot as plt
import matplotlib.cm as cmap
%matplotlib inline

import numpy as np
np.random.seed(206)

import theano
import theano.tensor as tt
import pymc3 as pm


# Mean and Covariance Functions¶

A large set of mean and covariance functions are available in PyMC3. It is relatively easy to define custom mean and covariance functions. Since PyMC3 uses Theano, their gradients do not need to be defined by the user.

## Mean functions¶

The following mean functions are available in PyMC3.

• gp.mean.Zero
• gp.mean.Constant
• gp.mean.Linear

All follow a similar usage pattern. First, the mean function is specified. Then it can be evaluated over some inputs. The first two mean functions are very simple. Regardless of the inputs, gp.mean.Zero returns a vector of zeros with the same length as the number of input values.

### Zero¶

In [24]:

zero_func = pm.gp.mean.Zero()

X = np.linspace(0, 1, 5)[:, None]
print(zero_func(X).eval())

[ 0.  0.  0.  0.  0.]


The default mean functions for all GP implementations in PyMC3 is Zero.

### Constant¶

gp.mean.Constant returns a vector whose value is provided.

In [25]:

const_func = pm.gp.mean.Constant(25.2)

print(const_func(X).eval())

[ 25.2  25.2  25.2  25.2  25.2]


As long as the shape matches the input it will receive, gp.mean.Constant can also accept a Theano tensor or vector of PyMC3 random variables.

In [26]:

const_func_vec = pm.gp.mean.Constant(tt.ones(5))

print(const_func_vec(X).eval())

[ 1.  1.  1.  1.  1.]


### Linear¶

gp.mean.Linear is a takes as input a matrix of coefficients and a vector of intercepts (or a slope and scalar intercept in one dimension).

In [27]:

beta = np.random.randn(3)
b = 0.0

lin_func = pm.gp.mean.Linear(coeffs=beta, intercept=b)

X = np.random.randn(5, 3)
print(lin_func(X).eval())

[-2.21615117  0.18483208 -0.13889476 -0.8641522  -1.89552731]


## Defining a custom mean function¶

To define a custom mean function, subclass gp.mean.Mean, and provide __call__ and __init__ methods. For example, the code for the Constant mean function is

import theano.tensor as tt

class Constant(pm.gp.mean.Mean):

def __init__(self, c=0):
Mean.__init__(self)
self.c = c

def __call__(self, X):
return tt.alloc(1.0, X.shape[0]) * self.c


Remember that Theano must be used instead of NumPy.

## Covariance functions¶

PyMC3 contains a much larger suite of built-in covariance functions. The following shows functions drawn from a GP prior with a given covariance function, and demonstrates how composite covariance functions can be constructed with Python operators in a straightforward manner. Our goal was for our API to follow kernel algebra (see Ch.4 of Rassmussen + Williams) as closely as possible. See the main documentation page for an overview on their usage in PyMC3.

### Exponentiated Quadratic¶

$k(x, x') = \mathrm{exp}\left[ -\frac{(x - x')^2}{2 \ell^2} \right]$
In [6]:

lengthscale = 0.2
eta = 2.0
cov = eta**2 * pm.gp.cov.ExpQuad(1, lengthscale)

X = np.linspace(0, 2, 200)[:,None]
K = cov(X).eval()

plt.figure(figsize=(14,4))
plt.plot(X, pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=3).T);
plt.xlabel("X");


### Two (and higher) Dimensional Inputs¶

#### Both dimensions active¶

It is easy to define kernels with higher dimensional inputs. Notice that the ls (lengthscale) parameter is an array of length 2. Lists of PyMC3 random variables can be used for automatic relevance determination (ARD).

In [7]:

x1, x2 = np.meshgrid(np.linspace(0,1,10), np.arange(1,4))
X2 = np.concatenate((x1.reshape((30,1)), x2.reshape((30,1))), axis=1)

ls = np.array([0.2, 1.0])
cov = pm.gp.cov.ExpQuad(input_dim=2, ls=ls)

K = theano.function([], cov(X2))()
m = plt.imshow(K, cmap="inferno", interpolation='none'); plt.colorbar(m);


#### One dimension active¶

In [8]:

ls = 0.2
cov = pm.gp.cov.ExpQuad(input_dim=2, ls=ls, active_dims=[0])

K = theano.function([], cov(X2))()
m = plt.imshow(K, cmap="inferno", interpolation='none'); plt.colorbar(m);


#### Product of covariances over different dimensions¶

Note that this is equivalent to using a two dimensional ExpQuad with separate lengthscale parameters for each dimension.

In [9]:

ls1 = 0.2
ls2 = 1.0
cov1 = pm.gp.cov.ExpQuad(2, ls1, active_dims=[0])
cov2 = pm.gp.cov.ExpQuad(2, ls2, active_dims=[1])
cov = cov1 * cov2

K = theano.function([], cov(X2))()
m = plt.imshow(K, cmap="inferno", interpolation='none'); plt.colorbar(m);


### White Noise¶

$k(x, x') = \sigma^2 \mathrm{I}_{xx}$
In [10]:

sigma = 2.0
cov = pm.gp.cov.WhiteNoise(sigma)

X = np.linspace(0, 2, 200)[:,None]
K = cov(X).eval()

plt.figure(figsize=(14,4))
plt.plot(X, pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=3).T);
plt.xlabel("X");


### Constant¶

$k(x, x') = c$
In [11]:

c = 2.0
cov = pm.gp.cov.Constant(c)

X = np.linspace(0, 2, 200)[:,None]
K = cov(X).eval()

plt.figure(figsize=(14,4))
plt.plot(X, pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=3).T);
plt.xlabel("X");


### Rational Quadratic¶

$k(x, x') = \left(1 + \frac{(x - x')^2}{2\alpha\ell^2} \right)^{-\alpha}$
In [12]:

alpha = 0.1
ls = 0.2
tau = 2.0
cov = tau * pm.gp.cov.RatQuad(1, ls, alpha)

X = np.linspace(0, 2, 200)[:,None]
K = cov(X).eval()

plt.figure(figsize=(14,4))
plt.plot(X, pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=3).T);
plt.xlabel("X");


### Exponential¶

$k(x, x') = \mathrm{exp}\left[ -\frac{||x - x'||}{2\ell^2} \right]$
In [13]:

inverse_lengthscale = 5
cov = pm.gp.cov.Exponential(1, ls_inv=inverse_lengthscale)

X = np.linspace(0, 2, 200)[:,None]
K = cov(X).eval()

plt.figure(figsize=(14,4))
plt.plot(X, pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=3).T);
plt.xlabel("X");


### Matern 5/2¶

$k(x, x') = \left(1 + \frac{\sqrt{5(x - x')^2}}{\ell} + \frac{5(x-x')^2}{3\ell^2}\right) \mathrm{exp}\left[ - \frac{\sqrt{5(x - x')^2}}{\ell} \right]$
In [14]:

ls = 0.2
tau = 2.0
cov = tau * pm.gp.cov.Matern52(1, ls)

X = np.linspace(0, 2, 200)[:,None]
K = cov(X).eval()

plt.figure(figsize=(14,4))
plt.plot(X, pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=3).T);
plt.xlabel("X");


### Matern 3/2¶

$k(x, x') = \left(1 + \frac{\sqrt{3(x - x')^2}}{\ell}\right) \mathrm{exp}\left[ - \frac{\sqrt{3(x - x')^2}}{\ell} \right]$
In [15]:

ls = 0.2
tau = 2.0
cov = tau * pm.gp.cov.Matern32(1, ls)

X = np.linspace(0, 2, 200)[:,None]
K = cov(X).eval()

plt.figure(figsize=(14,4))
plt.plot(X, pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=3).T);
plt.xlabel("X");


### Cosine¶

$k(x, x') = \mathrm{cos}\left( 2 \pi \frac{||x - x'||}{ \ell^2} \right)$
In [16]:

period = 0.5
cov = pm.gp.cov.Cosine(1, period)

X = np.linspace(0, 2, 200)[:,None]
K = cov(X).eval()

plt.figure(figsize=(14,4))
plt.plot(X, pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=3).T);
plt.xlabel("X");


### Linear¶

$k(x, x') = (x - c)(x' - c)$
In [17]:

c = 1.0
tau = 2.0
cov = tau * pm.gp.cov.Linear(1, c)

X = np.linspace(0, 2, 200)[:,None]
K = cov(X).eval()

plt.figure(figsize=(14,4))
plt.plot(X, pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=3).T);
plt.xlabel("X");


### Polynomial¶

$k(x, x') = [(x - c)(x' - c) + \mathrm{offset}]^{d}$
In [18]:

c = 1.0
d = 3
offset = 1.0
tau = 0.1
cov = tau * pm.gp.cov.Polynomial(1, c=c, d=d, offset=offset)

X = np.linspace(0, 2, 200)[:,None]
K = cov(X).eval()

plt.figure(figsize=(14,4))
plt.plot(X, pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=3).T);
plt.xlabel("X");


### Multiplication with a precomputed covariance matrix¶

A covariance function cov can be multiplied with numpy matrix, K_cos, as long as the shapes are appropriate.

In [19]:

# first evaluate a covariance function into a matrix
period = 0.2
cov_cos = pm.gp.cov.Cosine(1, period)
K_cos = theano.function([], cov_cos(X))()

# now multiply it with a covariance *function*
cov = pm.gp.cov.Matern32(1, 0.5) * K_cos

X = np.linspace(0, 2, 200)[:,None]
K = cov(X).eval()

plt.figure(figsize=(14,4))
plt.plot(X, pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=3).T);
plt.xlabel("X");


### Applying an arbitary warping function on the inputs¶

If $$k(x, x')$$ is a valid covariance function, then so is $$k(w(x), w(x'))$$.

The first argument of the warping function must be the input X. The remaining arguments can be anything else, including random variables.

In [20]:

def warp_func(x, a, b, c):
return 1.0 + x + (a * tt.tanh(b * (x - c)))

a = 1.0
b = 5.0
c = 1.0

cov_m52 = pm.gp.cov.ExpQuad(1, 0.2)
cov = pm.gp.cov.WarpedInput(1, warp_func=warp_func, args=(a,b,c), cov_func=cov_m52)

X = np.linspace(0, 2, 400)[:,None]
wf = theano.function([], warp_func(X.flatten(), a,b,c))()
plt.plot(X, wf); plt.xlabel("X"); plt.ylabel("warp_func(X)");
plt.title("The warping function used");

K = cov(X).eval()
plt.figure(figsize=(14,4))
plt.plot(X, pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=3).T);
plt.xlabel("X");


### Constructing Periodic using WarpedInput¶

The WarpedInput kernel can be used to create the Periodic covariance. This covariance models functions that are periodic, but are not an exact sine wave (like the Cosine kernel is).

The periodic kernel is given by

$k(x, x') = \exp\left( -\frac{2 \sin^{2}(\pi |x - x'|\frac{1}{T})}{\ell^2} \right)$

Where T is the period, and $$\ell$$ is the lengthscale. It can be derived by warping the input of an ExpQuad kernel with the function $$\mathbf{u}(x) = (\sin(2\pi x \frac{1}{T})\,, \cos(2 \pi x \frac{1}{T}))$$. Here we use the WarpedInput kernel to construct it.

The input X, which is defined at the top of this page, is 2 “seconds” long. We use a period of $$0.5$$, which means that functions drawn from this GP prior will repeat 4 times over 2 seconds.

In [21]:

def mapping(x, T):
c = 2.0 * np.pi * (1.0 / T)
u = tt.concatenate((tt.sin(c*x), tt.cos(c*x)), 1)
return u

T = 0.6
ls = 0.4
# note that the input of the covariance function taking
#    the inputs is 2 dimensional
cov_exp = pm.gp.cov.ExpQuad(2, ls)
cov = pm.gp.cov.WarpedInput(1, cov_func=cov_exp,
warp_func=mapping, args=(T, ))

K = cov(X).eval()
plt.figure(figsize=(14,4))
plt.plot(X, pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=3).T);
plt.xlabel("X");


### Periodic¶

There is no need to construct the periodic covariance this way every time. A more efficient implementation of this covariance function is built in.

In [22]:

period = 0.6
ls = 0.4
cov = pm.gp.cov.Periodic(1, period=period, ls=ls)

K = cov(X).eval()
plt.figure(figsize=(14,4))
plt.plot(X, pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=3).T);
plt.xlabel("X");


### Gibbs¶

The Gibbs covariance function applies a positive definite warping function to the lengthscale. Similarly to WarpedInput, the lengthscale warping function can be specified with parameters that are either fixed or random variables.

In [23]:

def tanh_func(x, ls1, ls2, w, x0):
"""
ls1: left saturation value
ls2: right saturation value
w:   transition width
x0:  transition location.
"""
return (ls1 + ls2) / 2.0 - (ls1 - ls2) / 2.0 * tt.tanh((x - x0) / w)

ls1 = 0.05
ls2 = 0.6
w = 0.3
x0 = 1.0
cov = pm.gp.cov.Gibbs(1, tanh_func, args=(ls1, ls2, w, x0))

wf = theano.function([], tanh_func(X, ls1, ls2, w, x0))()
plt.plot(X, wf); plt.ylabel("tanh_func(X)"); plt.xlabel("X"); plt.title("Lengthscale as a function of X");

K = cov(X).eval()
plt.figure(figsize=(14,4))
plt.plot(X, pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=3).T);
plt.xlabel("X");


### Defining a custom covariance function¶

Covariance function objects in PyMC3 need to implement the __init__, diag, and full methods, and subclass gp.cov.Covariance. diag returns only the diagonal of the covariance matrix, and full returns the full covariance matrix. The full method has two inputs X and Xs. full(X) returns the square covariance matrix, and full(X, Xs) returns the cross-covariances between the two sets of inputs.

For example, here is the implementation of the WhiteNoise covariance function:

class WhiteNoise(pm.gp.cov.Covariance):
def __init__(self, sigma):
super(WhiteNoise, self).__init__(1, None)
self.sigma = sigma

def diag(self, X):
return tt.alloc(tt.square(self.sigma), X.shape[0])

def full(self, X, Xs=None):
if Xs is None:
return tt.diag(self.diag(X))
else:
return tt.alloc(0.0, X.shape[0], Xs.shape[0])


If we have forgotten an important covariance or mean function, please feel free to submit a pull request!